Deep learning with segregated dendrites

Blake Aaron Richards
Learning in Neural Circuits Laboratory
Department of Biological Sciences
University of Toronto Scarborough

linclab.org
Deep learning has revolutionized artificial intelligence

I think the real brain engages in deep learning

By this I mean the following:
I believe that the brain has mechanisms that allow it to **solve the credit assignment problem** in order to optimize **global cost functions**
1. Deep learning in biological neural networks

Khaligh-Razavi & Kriegeskorte (2014)
PLoS Computational Biology

... graphical representation...
Neuroscientists have almost completely ignored the credit assignment problem for decades.

(Or more accurately, they have assumed that reinforcement signals are sufficient for global cost function optimization.)
Neuroscientists have almost completely ignored the credit assignment problem for decades

(Or more accurately, they have assumed that reinforcement signals are sufficient for global cost function optimization)
2. Deep learning with random feedback weights

Surprisingly, credit assignment can be done with random feedback weights

Lillicrap et al. (2016)
Nature Communications
2. Deep learning with random feedback weights

Something similar can be achieved if we use random feedback weights to define local targets.

If \(\hat{h}_i \) is the target activity at layer \(i \), define:

\[
\hat{h}_{i-1} = h_{i-1} + g_i(\hat{h}_i) - g_i(h_i)
\]

This ensures that:

\[
h_i = \hat{h}_i \Rightarrow h_{i-1} = \hat{h}_{i-1}
\]

and

\[
\left\| \hat{h}_i - f_i(\hat{h}_{i-1}) \right\|_2^2 < \left\| \hat{h}_i - h_i \right\|_2^2
\]

Lee et al. (2015)

Joint Euro. Conf. on M. Learn. and Know. Disc. in Databases
The difficulty with these solutions is that they involve an implicit separate feedback pathway, in order to preserve feedforward calculations.

This is possible in the brain, but there is no evidence for anything like it.
Real neurons in the neocortex have a more complicated structure than the abstract ones used in machine learning. Perhaps the solution lies here...
3. Pyramidal neuron morphology

Feedback from other layers and regions of neocortex (and from associative thalamus)

Feedforward thalamic sensory inputs and within layer recurrent connections

From mdavisstudios.com
3. Pyramidal neuron morphology

Larkum et al. (2009), Science
3. Pyramidal neuron morphology

Larkum et al. (1999), *Nature*

Larkum et al. (2009), *Science*
Hypothesis: neocortical neurons segregate feedback in distal apical compartments in order to preserve feedforward calculations while still receiving feedback for credit assignment
4. A multi-compartment deep learning model

4. A multi-compartment deep learning model

We define a target firing rate for neuron i in the hidden layer using the plateau potentials:

$$\hat{\lambda}_i^C = \lambda_i^C + \alpha_i^t - \alpha_i^f$$

Average firing rate
We define the target firing rate for the output neurons to be the average firing rate during the target phase:

\[\lambda_i^\text{U} = \lambda_i^\text{Ut} \]

Output target

\[\hat{\lambda}_i^\text{C} = \lambda_i^\text{C} + \alpha_i^t - \alpha_i^f \]

Hidden target (from previous slide)

To train the network we perform stochastic gradient descent on these loss functions:

\[L^1 = \| \lambda^\text{U} - \lambda_{\text{max}} \sigma(\underline{U}^f) \|^2 \]

max firing rate

\[L^0 = \| \hat{\lambda}^\text{C} - \lambda_{\text{max}} \sigma(\underline{C}^f) \|^2 \]

average voltages during forward phase
There are two important things to understand about this approach

(1) The weight updates in the hidden layers use (spatially) local information for credit assignment, i.e. the difference between the plateaus:

\[\Delta W^0 \propto \alpha^t - \alpha^f \]

(2) Like Lee et al.'s (2015) Difference Target Propagation algorithm we can prove that our target coordinates learning across layers:

\[
\| \hat{\lambda}^U - \lambda_{max} \sigma\left(k_D W^1 \hat{\lambda}^C \right) \|_2^2 < \| \hat{\lambda}^U - \lambda_{max} \sigma(E [\bar{U}^f]) \|_2^2
\]

The expected rate of fire of the output neurons if the hidden layer was at its target

The expected rate of fire of the output neurons without the teaching signal
4. A multi-compartment deep learning model

Support of proof: when the hidden layer has a low error, so does the output layer.
4. A multi-compartment deep learning model

Our model exhibits deep learning (light), because **adding hidden layers improves performance**
The network learns abstract, category-based representations in its upper layers.
5. Relationship to feedback alignment

- Spiking feedback
- Continuous feedback

ΔW^0 ∝ ΔW^0_{BP} (degrees)

Maximum Pearson coefficient

Epoch

Regular
Shuffled

Local updates learning rule
Backpropagation learning rule
The coordination between the hidden layer and the output layer error was based on this inequality:

\[
\|\lambda^u - \lambda_{\text{max}} \sigma (k_D W^1 \lambda^C)\|^2 \leq \|\lambda^u - \lambda_{\text{max}} \sigma (E [\bar{U}^f])\|^2
\]

The proof for this has two conditions:

1. The output error is low (easy)

2. The maximum eigenvalue of this product is less than 1:

\[
(I - J_f J_g) (I - J_f J_g)^T
\]

where \(J_f\) and \(J_g\) are the forwards and backwards Jacobians, respectively.

This requires alignment of the forward and backward weights.
But, unlike Lee et al. (2015), here we don't do any learning on the backwards weights, so what happens?
We have demonstrated that we can achieve deep learning (light) in a simulation of neocortical pyramidal neurons.

The details of our model are undoubtedly not accurate, but we believe that there is an important principle that our model illustrates that can inform our understanding of biological deep learning.

One way to accomplish credit assignment without separate forward and backward pathways is to use electrotonically segregated dendritic compartments like those observed in the neocortex.
My wager: the complex, beautiful morphology of pyramidal neurons is an important component of nature's solution to deep learning.
We are beginning experiments to determine whether or not plateau potentials driven by apical inputs can modulate the **sign** of feedforward plasticity.

\[\Delta W^0 \propto \alpha^t - \alpha^f \]
We are beginning experiments to determine whether or not plateau potentials driven by apical inputs can modulate the sign of feedforward plasticity.

\[\Delta W^0 \propto \alpha^t - \alpha^f \]

We can use optogenetics paired with a digital multimirror device DMD to ensure we restrict ourselves to top-down vs. bottom-up input.

Matthew Tran
PhD Candidate
We are beginning experiments to determine whether or not plateau potentials driven by apical inputs can modulate the sign of feedforward plasticity.
7. Next steps: experimental explorations

We are beginning experiments to determine whether or not plateau potentials driven by apical inputs can modulate the sign of feedforward plasticity.

\[\Delta W^0 \propto \alpha_t - \alpha_f \]

We can use optogenetics paired with a digital multimirror device DMD to ensure we restrict ourselves to top-down vs. bottom-up input.

1. Infect downstream circuits that provide top-down inputs to sensory area (e.g. V1 or S1) to control top-down projections.

2. Infect Scnn1a-Tg3-Cre mice with floxed, red-shifted opsin.

3. Use DMD and light colour to restrict activation to top-down apical projections or bottom-up basal projections.

Matthew Tran
PhD Candidate
8. Feedback requirements

A

Output

Hidden

Input

Image

Teaching signal

Sparse weights (20% connected)

C

Output

Hidden

Input

Image

Teaching signal

Symmetric weights (+ N(0, 0.05))

B

Test error (%)

Epoch

Regular (100% connected)

Sparse (20% connected)

4.1%

3.6%

D

Test error (%)

Epoch

Random feedback weights

Symmetric weights

Symmetric weights with noise

5.7%

4.1%

3.6%
Segregation of the apical dendrites is critical for learning, but biologically realistic levels of attenuation are fine.
There is some evidence that apical dendrite inputs guide basal dendrite weight updates.
There is some evidence that apical dendrite inputs guide basal dendrite weight updates.

Plateau potentials driven by apical inputs determine where place fields form.

Bittner et al. (2015), *Nature Neuroscience*
There is some evidence that apical dendrite inputs guide basal dendrite weight updates.

Plateau potentials driven by apical inputs determine where place fields form.

Bittner et al. (2015), Nature Neuroscience
Synaptic plasticity rules at apical and basal dendrites appear to be different.

Sjöström & Häusser (2006), Neuron

The current model of pyramidal cell integration...

Larkum et al. (2009), Science
The other 30% of cells in the neocortex are gamma-amino butyric acid (GABA) releasing interneurons (which are usually inhibitory).

Current estimates are that there are around 15 types of GABAergic interneurons, though they all fall into 3 non-overlapping categories based on the expression of particular proteins: parvalbumin (PV or FS), somatostatin (SST or SOM) and the 5HT3a serotonin receptor.
The 3 different major classes of interneurons have different targets/effects

Note: roughly half of 5HT3a interneurons are vasoactive intestinal poly peptide (VIP) interneurons
SST interneurons are inhibited by VIP interneurons during motor feedback

Gentet et al. (2012), Nat. Neurosci.

Lee et al. (2013), Nat. Neurosci.
SST interneurons are inhibited by VIP interneurons during motor feedback

Fu et al. (2014), Neuron
VIP interneurons can be rapidly activated by reinforcement via acetylcholine inputs

Pi et al. (2013), Nature

Hangya et al. (2015), Cell